
Infineon BIFACES
Migrate iLLD demos to managed HighTec projects

Copyright (C) 2019 HighTec EDV-Systeme, GmbH
Version 2.4, May 2019



Table of Contents
1. About the author ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 1

2. Abbreviations ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 2

3. Terms ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3

MIGRATION GUIDE 4

4. Introduction∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 5

5. Prerequisites ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 6

6. Creating your iLLD demo codebase ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7

6.1. Merge demo, drivers and template ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7

6.2. Integrate simulated IO ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11

7. Establishing a baseline∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 12

8. Migration∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18

8.1. Installing the baseline∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 18

8.2. Migrating the baseline option sets∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 23

8.2.1. Compiler options∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 23

8.2.2. Assembler options ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27

8.2.3. Linker options ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 27

8.3. Runtime testing ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 29

9. Conclusion∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 32

APPENDIXES 33

Appendix A: Bibliography ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 34

Appendix B: Document history ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 35



1. About the author
Henk-Piet Glas (Principal Technical Specialist, Embedded Software), received his Beng in Information
Technology from NHL college, Leeuwarden. With over 20 years of experience he has worked in both
the embedded and data warehousing industry. His activities include dedicated FAE support, selected
FAE trainings and webinars, application note development, and technical contributions to fora.

Henk-Piet enjoys the creativity of independent coursework. He’s experimented with screenwriting,
video editing and creative documentary. For a while he aspired theatre making and during a brief stint
in 2001, he toured the UK and Ireland with a seriously funny theatre company called Ridiculusmus.
Recent creative work includes a handful of columns and several short stories.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   1



2. Abbreviations
API

Application Programming Interface

BIFACES
Build and Integration Framework for Automotive Controller Embedded Software.

BSP
Board Support Package

DAS
Device Access Server

IDE
Integrated Development Environment

IFX
Infineon

iLLD
Infineon Low Level Drivers

IO
Input/Output

SFR
Special Function Register

UDE
Universal Debug Engine

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   2



3. Terms
AURIX™

The next generation of Infineon’s TriCore™ 32-bit microcontroller architecture, featuring a
multicore implementation. AURIX™ combines easy-to-use functional safety support, a strong
increase in performance and a future-proven security solution in a highly scalable product family.

BIFACES
An application development environment that provides a unified platform for AURIX software
development and upcoming microcontrollers. Target users include application engineers and
customers who use the application examples or demo software drivers for prototyping within the
automotive domain.

Device Access Server
An abstraction layer between any third party debugger and the target system, developed by
Infineon. It includes several debug utilities that can be very useful when dealing with third party
debugger connection issues.

Free TriCore Entry Toolchain
Restricted version of the TriCore Development Platform, supporting a restricted selection of
AURIX derivatives. Following a single year duration its license automatically expires.

HighTec
Since its establishment in 1982, HighTec has been a privately owned company and the world’s
largest commercial open source compiler vendor.

Infineon
Leading innovator in the international semiconductor industry. Infineon designs, develops,
manufactures and markets a broad range of semiconductors and complete system solutions for
selected industries.

Infineon Low Level Drivers
Developed by Infineon, its aim is to provide access and configuration functions for the integrated
peripherals of Infineon Microcontrollers. Together with SFR header files they are a fundamental
part of the infrastructure for tests and applications which are developed by several IFX teams.

MyICP
An online information portal hosted by Infineon that provides access to additional content,
services, and customised information. Users must register to make use of this service.

PLS
One of the world’s leading manufacturers of development tools for 16-bit and 32-bit
microcontroller families.

Universal Debug Engine
Debugging solution by PLS featuring debug support for a wide range of 16-bit and 32-bit
microcontrollers including AURIX.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   3



Migration Guide

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   4



4. Introduction
BIFACES was developed by Infineon with the intent of allowing application engineers and automotive
users to develop application notes and demonstration software.

BIFACES iLLD demo projects consist of non-managed makefiles. That is, a set of generated makefiles,
but without control via Eclipse’s compiler, assembler and linkers options. The aim of this application
note therefore is to transform these into managed HighTec projects, thereby regaining control.

In the first stage the iLLD demo codebase is imported as a project derived from makefile. We will test
its codebase to make sure it actually works. When it does, it can then subsequently be used as a
baseline. We then create a regular HighTec project and start migrating the baseline, effectively using it
as a repository for code, generated content, linker script and tool settings.

The migration completes with a rudimentary comparison of the map file and runtime results to those
collected when we tested the baseline. This application note takes about 1 hour to complete. This can
be reduced to less than 10 minutes as you become more practised.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   5



5. Prerequisites
For this application note you will need to meet the below requirements.

Component Version

free_tricore_entry_tool_chain.zip v4.9.1.0-Infineon-2.0

BIFACES_V1_0_2_Win32.zip v1.0.2

BaseProjects_AURIX1G_V1_0_1_10_0.zip v1.0.1.10.0

iLLD_1_0_1_10_0_TC2xx_Drivers_And_Demos_Release.zip v1.0.1.10.0

For runtime testing we used the TC277 TFT Application Kit (fitted with D-step). The
Free Entry TriCore Toolchain includes UDE Starterkit 4.10. We will use its Eclipse plugin and therefore
mostly refer to it as the UDE perspective, or simply UDE. We connect to the onboard wiggler by means
of a USB cable.

Using the onboard wiggler is an imposed restriction of the UDE starterkit. External wigglers only
work with the professional version of the Universal Debug Engine.

The professional tools do not include a debugger. That voids the debugging chapters in that you
must use your own professional debugger instead.

This document replaces the previous version based on the Infineon Software Framework.
Meanwhile this framework has been replaced with BIFACES. Since some of its migration steps no
longer apply, we renewed this document accordingly.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   6

http://free-entry-toolchain.hightec-rt.com
https://myicp.infineon.com/sites/microcontrollers-tools_connection/_layouts/OSSSearchResults.aspx?k=BIFACES_V1_0_2_Win32.zip
https://myicp.infineon.com/sites/microcontrollers-tools_connection/_layouts/OSSSearchResults.aspx?k=BaseProjects_AURIX1G_V1_0_1_10_0.zip
https://myicp.infineon.com/sites/microcontrollers-tools_connection/_layouts/OSSSearchResults.aspx?k=iLLD_1_0_1_10_0_TC2xx_Drivers_And_Demos_Release.zip
https://www.infineon.com/cms/en/product/evaluation-boards/kit_aurix_tc277_tft


6. Creating your iLLD demo codebase
As a starting point for this application note you will need to decide which iLLD demo you want to
migrate. Since these demos come without makefiles and linker scripts, they will first have to be
wrapped into a matching base framework template before you can build them. Also, since the base
framework project contains an iLLD subset, generally you will have to replace it with its entire set of
drivers. And in addition you must add simulated IO support to allow UDE to redirect printf statements
to its integrated terminal. The end result is what we will refer to as the iLLD demo codebase.

6.1. Merge demo, drivers and template
For this application note we used the iLLD SCU Clock Demo. We will therefore start with the following
three software components:

1. AURIX iLLD ScuClockDemo

2. AURIX iLLD Base Framework template for TC277 D-step

3. AURIX iLLD drivers for TC277 D-step

And wrap them into one. These three can be obtained from the packages listed in chapter
Prerequisites. The foundation of any iLLD demo is the base framework template of your chosen
derivative.

Figure 1. The base framework template for TC277 D-step

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   7



Its subfolder 0_Src contains the functional part of the template (a skeleton main for each core) and a
subset of the iLLD drivers, contained in folders AppSw and BaseSw respectively.

Figure 2. The default base framework sample codebase

Both of these folders may be purged, because we will replace them with our intended iLLD demo and
the full set of iLLD drivers.

Figure 3. Purge the default base framework sample codebase

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   8



Following the purge, drill down into the iLLD driver archive and pull its entire codebase.

Figure 4. Copy the full iLLD codebase

Subsequently paste the pulled content into your iLLD demo.

Figure 5. Install iLLD codebase

You also need to replace the functional part by pulling the ScuClockDemo codebase from the iLLD
sample archive.

Figure 6. Pulling the SCU clock demo codebase

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   9



And paste it side-along the iLLD driver codebase.

Figure 7. Install SCU clock demo codebase

Your initial base framework template is now the foundation of the iLLD demo of your choice.

Figure 8. Finished integration of template, iLLD demo and iLLD drivers

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   10



The only thing left is to chose a more generic name.

Figure 9. Renaming the base framework project

6.2. Integrate simulated IO
For debugging we will use UDE’s integrated simulated IO terminal. This allows C library functions like
printf and scanf to interact with the user without having to extend your program with a native IO
channel. In order for this to work, low level functions read and write must be overloaded to make use
of the PLS API. The Free Entry TriCore Toolchain includes source code for this by means of
simio_pls_tc.c and simio_pls.h, which can be found in the BSP folder. Simply add them to your
project as demonstrated in Figure 10.

Figure 10. Integrate PLS simulated IO support

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   11



7. Establishing a baseline
We can now create a baseline. That is, a pre-build of the untarnished iLLD demo that will be used as a
reference once the actual migration is complete. Start your HighTec IDE and proceed to import your
iLLD demo codebase using the following steps:

1. Select File → New → Project…

2. Select C/C++ → Makefile project with Existing Code and press Next

3. Select Browse choose your demo and press OK

Since the iLLD demo codebase makes use of the BIFACES framework, we need to add two project
environment variables making sure that it will build. Start by adding BINUTILS_PATH using these
steps:

1. Right-click the Demo project and select Properties

2. Navigate to C/C++ Build → Environment

3. Click Add… and create BINUTILS_PATH

Also see Figure 11. Note that you must substitute its path with that of your own BIFACES installation.

Figure 11. Creating BINUTILS_PATH project environment variable

Note that project environment variables have a transient nature. They only exist for the duration of your
build. Proceed to create a PATH variable that is derived from BINUTILS_PATH.

Figure 12. Derive PATH from BINUTILS_PATH environment variable

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   12



During a build this variable will also be temporarily pushed into your native OS environment, however
since it already exists, it will be appended to the native one. Figure 13 shows the two variables we just
created. Note that PATH has meanwhile been replaced with the one from the OS. Variable
${BINUTILS_PATH} has been appended to its rear end. Since typically PATH is relative long, this is
not visible in the snapshot.

Figure 13. Project variable overview

Use project variables over Windows environment variables

Avoid adding the aforementioned project environment variables to your Windows environment.
They are only required whilst establishing the baseline. More importantly, some utilities installed
by BIFACES are also installed by HighTec. These have been known to conflict if they occur on the
same PATH. Regular HighTec projects will then break during builds.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   13



Following the import you must make one last change which involves retouching the
B_GNUC_TRICORE_PATH makefile variable to point to the installation of the Free Entry TriCore Toolchain.
Using the HighTec Project Explorer, navigate to Demo → 1_ToolEnv → 0_Build → 1_Config →

Config_Tricore_Gnuc and double-click Config_Gnuc.mk. Then adjust it. You see this depicted in the
next snapshot, which also shows the relative location within your baseline project.

Figure 14. Retouching B_GNUC_TRICORE_PATH makefile variable

When this is done you can proceed to build your project as depicted in Figure 15.

Figure 15. Building the baseline

Your ELF program image can now be flashed onto the target. For this you must create a UDE
configuration. The way this works is by means of the following steps:

1. Goto the HighTec Project Explorer

2. Right-click your Demo project

3. select Debug As → Debug Configurations…

4. Click Universal Debug Engine icon

5. Click New launch configuration button

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   14



To your right there now is a Main panel. In here you must must enter the relative location of your ELF
application. Figure 16 shows how.

Figure 16. Adding ELF application to UDE build configuration

Switch to the UDE Startup panel and create a target configuration file using the following steps:

1. Click the Create Configuration button

2. Tick the Use a default target configuration radiobutton

3. Drill down to Application Kit with TC277 D-Step (Multicore Configuration)

4. Press Finish choose location and press Save

Figure 17 shows that a default configuration AppKit_TC277D.cfg has been created.

Figure 17. Default AppKit_TC277D.cfg configuration

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   15



Press the Debug button. The UDE perspective will be opened, and it will attempt to connect to your
target. Upon success you are presented with its flash utility dialog. Press Program All and wait for it to
complete. Then press Verify All to make sure things were done right. Then press Exit. Figure 18 shows
the resulting UDE perspective.

Figure 18. UDE perspective after flashing the baseline

Select Views → Simulated I/O. This adds the Simulated I/O view to the UDE perspective.

Figure 19. Adding Simulated I/O view to UDE perspective

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   16



Set the following application breakpoint.

Figure 20. Application breakpoint

Run the application using Debug → Start Program Execution. Figure 21 lists the expected output of
the Simulated I/O view.

Figure 21. Simulated IO output when hitting breakpoint

We have now confirmed the baseline application. We’ll proceed to use it as both a reference and a
repository throughout the next chapter.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   17



8. Migration
Everything is now in place to start with the actual migration. First thing we’ll need to be doing is to
create a managed HighTec project and install the baseline codebase. We also need to configure some
initial project settings such as the iLLD header files search list. We subsequently migrate the compiler,
assembler and linker makefile rules and then lastly build and verify the migrated project. We’ll do this
by means of a rudimentary comparison of its mapfile against the baseline mapfile. If that looks
promising we test the runtime results as before.

8.1. Installing the baseline
First create a managed HighTec Project.

1. Select File → New → HighTec Project

2. For Project name enter Managed and press Next

3. Select Application Kit TC277 D-Step from the hardware selection tree

4. Tick the Create empty project checkbox and press Finish

You now have an empty HighTec project that needs to be populated and configured. Its default
configuration name is called iRAM. Switch to configuration Default and rename it to debug.

1. Select Project → Properties

2. Navigate to C/C++ Build → Settings

3. Press Manage Configurations… button in top-right corner

4. Click the Default configuration and press Set Active

5. Click Rename… and enter debug

Figure 22 shows the resulting dialog. Press OK to exit.

Figure 22. Renaming Default config

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   18



Your active project configuration is updated as depicted in Figure 23.

Figure 23. Confirming renamed configuration

Navigate to Demo → 0_Src and copy AppSw and BaseSw. Navigate to Managed → src and paste them.

Figure 24. Copy baseline codebase

Figure 25. Paste baseline into iLLD demo

Figure 26. iLLD baseline installed

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   19



Navigate to Demo → 1_ToolEnv → 0_Build → 1_Config and copy the Lcf_Gunc_Tricore_tc.lsl
linker script. Paste it into the top node of Managed.

Figure 27. Copy Lcf_Gunc_Tricore_tc.lsl linker script

Figure 28. Linker script pasted into iLLD demo

Navigate to Demo → 1_ToolEnv → 0_Build → 9_Make and copy the Tricore_IncludePathList.opt
iLLD header files search list.

Figure 29. Copy iLLD header files search list

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   20



Paste it into the top node of Managed.

Figure 30. iLLD header files search list pasted into iLLD demo

The implications of skipping the baseline

The iLLD header files search list is a generated file from BIFACES. If it is missing, it most likely
means that you skipped the baseline chapter.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   21



Rename the aforementioned filenames to something more pleasing. Figure 31 shows how.

Figure 31. Renamed linker script and iLLD header files search list

Open Managed.i and replace 0_Src with ../src. Then add it to the compiler Miscellaneous options
menu. Note the @ prefix which instructs the compiler to use it as an option file. Also note the
${ProjDirPath} to align with the base folder.

Figure 32. Retouching the iLLD header files search list

Figure 33. Add search list as a compiler option file

The iLLD header files search list consists of paths that are relative to the working folder of your
current configuration. It (demo) is created during your first build.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   22



Lastly add the Managed.x linker script to the General options of your linker. Also note the
${ProjDirPath} to align it to the base project.

Figure 34. Retouching the iLLD header files search list

8.2. Migrating the baseline option sets
Migrating baseline makefile option sets is a step-by-step process of translating individual baseline
command line options to their equivalent HighTec IDE project settings. For this we return to module
Config_Gnuc.mk which contains the makefile variables as depicted in Figure 35. The next three
chapters will migrate them one by one.

Figure 35. Baseline makefile rules

8.2.1. Compiler options
B_GNUC_TRICORE_CC_OPTIONS contains the compiler option set. Start by mapping -mtc161. This
option defines the architecture instruction set that must be used. Since the core instruction set version
is derived from the CPU project settings there is no need to migrate it because it is already in place. To
review the current CPU type goto Project → Properties and select C/C++ Build → Settings → Global
Options.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   23



Figure 36. Architecture (-mtc161) derived from CPU type

Option -g enables compiler debug information. It is mapped as follows:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Compiler → Debugging

3. From the Debug Level dropdown box select Default (-g)

Figure 37. Enable compiler debug information (-g)

Option -O2 is an optimisation group that optimises for speed. These are the steps to enable it:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Compiler → Optimization

3. From the Optimization Level dropdown box select Speed

Figure 38. Optimise for speed (-O2)

The meaning of -fno-common is that uninitialised data is stored in a .bss section. Each optimisation
group sets it by default. In other words, no need to do anything.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   24



Next in line is -fstrict-volatile-bitfields, an option that assures forced read/write accesses to
individual bitfields. This option doesn’t have a dedicated IDE setting and must be added as a
miscellaneous option instead.

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Compiler → Miscellaneous

3. Add -fstrict-volatile-bitfields

Figure 39. Adding options without dedicated IDE settings

Options -fdata-sections and -ffunction-settings can be mapped in one go. These suffix a
variable name and/or function name to the default section name which greatly benefits garbage
collection during linking. They can be set using the following steps:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Compiler → Code Generation

3. Tick Generate a section for each data object (-fdata-sections) checkbox

4. Tick Generate a section for each function (-ffunction-settings) checkbox

Figure 40. Suffix default section names

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   25



Next one up is -Wall, which is mapped as follows:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Compiler → Warnings

3. Untick all checkboxes

4. Tick All Warnings (-Wall) checkbox

Figure 41. Check for most warnings (-Wall)

Option -std=c99 defines the 1999 ISO coding standard that should be checked against. It is our last
compiler option, and it is mapped as follows:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Compiler → Language Dependent

3. From the C standard (-std) dropdown box select C 99

Figure 42. Coding for C 99 (-std=c99)

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   26



8.2.2. Assembler options
BIFACES uses the steering program (tricore-gcc) to execute the compiler, assembler and linker
rules. The steering program itself is in charge of sifting through their associated option sets and
deciding which flags apply to itself, which ones need to be translated, redirected or sometimes even
dropped. Knowing this, provides some insight as to why Figure 35 creates a carbon copy of
B_GNUC_TRICORE_CC_OPTIONS when declaring the assembler option set
B_GNUC_TRICORE_ASM_OPTIONS; it anticipates translation. The trick is to find out what effective
assembler option set it is translated to. Figure 43 shows how you can do this from the command line.
The commands it lists were run from an ssh session connected to CentOS.

Figure 43. Extracting the assembler option set

What this tells us is that most options have actually been dropped. Only -mtc161 is passed and option
-g is translated to -gdwarf2. Neither of these needs to be migrated because these are already the
defaults. In the same way as shown in Figure 36 the assembler architecture is derived from the chosen
project CPU type.

The takeaway of the previous is that almost always you can stick to the default assembler project
options.

8.2.3. Linker options
The linker command line options are assigned to variable B_GNUC_TRICORE_LD_OPTIONS starting with
-mtc161. For the same reason as mentioned for compiler command line option -mtc161 there is no
need to map it. We can therefore quickly move on to -Wl,--gc-sections. This option actually consists
of two parts. The first (-Wl) tells the steering program that the next option must be redirected to the
linker. This is sometimes necessary if the steering program doesn’t know how to handle a specific
option.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   27



The second part (--gc-sections) instructs the linker to remove unreferenced sections, the very reason
why we generated such fine-grained sections in Figure 40. Any default project has this option already
enabled, but these are the steps in case you wish to make sure:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Linker → Optimization

3. Tick Remove unreferenced sections (-Wl,--gc-sections) checkbox

Figure 44. Remove unreferenced sections (--gc-sections)

Next, option -nostartfiles is migrated using the following steps:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Linker → General

3. Tick Skip standard system startup files when linking (-nostartfiles) checkbox

Figure 45. Dropping default startup code and constructor initialisation

BIFACES, C++, and the constructor attribute

The previous drops both the default startup code and the constructor/destructor initialisation
sections. At the point of writing this document BIFACES doesn’t support C++ demos, so that
makes perfect sense. However note that regular C functions declared with the constructor
attribute will therefore also cease to work.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   28



The last option is -Wl,-n so essentially the -n linker command line option. This option switches off the
alignment of the program headers within an ELF archive. As a result they become physically smaller
without effecting the program image itself. As with the the garbage collection command line option it is
already the default for any project. To review it, use the following steps:

1. Select Project → Properties

2. Select C/C++ Build → Settings → TriCore C Linker → Miscellaneous

Figure 46. Creating physically smaller ELF files (-Wl,-n)

We have now completed the migration of all project options. Proceed building the project as before.

8.3. Runtime testing
Following the build, a folder demo has been created in the root of project Managed. Amongst others it
contains the project map file and the application ELF file. A successful build alone is no guarantee that
the application will work as designed. Let’s do the following quick test:

1. Goto the HighTec Project Explorer

2. Double-click Demo → 2_Out → Gnuc → 0_Src → EthDemo_tc.map

3. Search for Memory Configuration block

4. Remove all rows with Used column set to 0x00000000

5. Double-click Managed → pflsh0 → Managed.map

6. Search for Memory Configuration block

7. Remove all rows with Used column set to 0x00000000

8. Rearrange both map files to horizontal side-by-side view

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   29



Figure 47 lists the edited mapfiles.

Figure 47. Rudimentary comparison of retouched mapfiles

Note that in the framework demo project memory demo consumes 0x801F73B8 bytes of memory. The
consumption for the migrated project is identical. While this is not a binary comparison it is promising
nonetheless.

Let’s proceed to take a look at the runtime results.

1. Goto the HighTec Project Explorer

2. RMB Managed

3. select Debug As → Debug Configurations…

4. Click Universal Debug Engine icon

5. Click New launch configuration button

The Universal Debug Engine icon will spawn a child that inherits its name from our project. Proceed as
follows:

1. Click UDE Startup tab

2. Click Create Configuration button

3. Tick Use a default target configuration radiobutton

4. Drill down to Application Kit with TC277T D-Step (Multicore Configuration)

5. Press Finish choose location and press Save

6. Press Debug

The UDE perspective will now be launched and the debugger tries to connect to the target. On success
you may proceed to flash the application as before.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   30



Next place a breakpoint and run the target by means of Debug → Start Program Execution. This will
produce identical output as before.

Figure 48. Runtime simulated IO results

There you have it. Our original baseline has been successfully migrated to a HighTec IDE equivalent.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   31



9. Conclusion
In this application note we showed how to migrate BIFACES demonstration software to managed
HighTec projects. We showed how to do this with the least amount of effort using a non-managed
baseline project for comparison and repository. While this application note by no means reflects all
possible paths that might unfold during a routine migration, we hope nonetheless that it will serve as a
stronghold when such circumstances occur.

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   32



Appendixes

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   33



Appendix A: Bibliography
▪ [1] HighTec Partners, http://www.hightec-rt.com/en/company/partners.html

▪ [2] About HighTec, http://www.hightec-rt.com/en/company/about-us.html

▪ [3] PLS Universal Debug Engine, https://www.pls-mc.com/ude

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   34

http://www.hightec-rt.com/en/company/partners.html
http://www.hightec-rt.com/en/company/about-us.html
https://www.pls-mc.com/ude


Appendix B: Document history
Version Date Changes to the previous version

1.0 6-2017 starter template

2.0 7-2017 initial draft

2.2 8-2017 feedback rounds #1 and #2

2.3 9-2017 featuring bi-target document compilation.

3.0 5-2019 update to most recent BIFACES

Copyright © 2019 HighTec EDV-Systeme, GmbH Infineon BIFACES - Migrate iLLD demos to managed HighTec projects   |   35



HighTec EDV-Systeme GmbH
Europaallee 19, D-66113 Saarbrücken
info@hightec-rt.com
+49-681-92613-16
www.hightec-rt.com


	Infineon BIFACES : Migrate iLLD demos to managed HighTec projects
	Table of Contents
	1. About the author
	2. Abbreviations
	3. Terms
	Migration Guide
	4. Introduction
	5. Prerequisites
	6. Creating your iLLD demo codebase
	6.1. Merge demo, drivers and template
	6.2. Integrate simulated IO

	7. Establishing a baseline
	8. Migration
	8.1. Installing the baseline
	8.2. Migrating the baseline option sets
	8.2.1. Compiler options
	8.2.2. Assembler options
	8.2.3. Linker options

	8.3. Runtime testing

	9. Conclusion

	Appendixes
	Appendix A: Bibliography
	Appendix B: Document history


